
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Sustainable Approach to Developing Software in Well
Understood Domains

Jacques Carette

Computing and Software

McMaster University

Hamilton, Canada

carette@mcmaster.ca

Spencer Smith

Computing and Software

McMaster University

Hamilton, Canada

smiths@mcmaster.ca

Jason Balaci

Computing and Software

McMaster University

Hamilton, Canada

balacij@mcmaster.ca

ABSTRACT
Missing abstract.

KEYWORDS
code generation, document generation, knowledge capture, soft-

ware engineering, scientific software

ACM Reference Format:
Jacques Carette, Spencer Smith, and Jason Balaci. 2021. A Sustainable Ap-

proach to Developing Software in Well Understood Domains. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
“Software” is not uniform. To use the exact same process for de-

veloping an embedded safety-critical piece of code (like that of a

pacemaker), the flight control software for an airplane, a one-off

script for moving some files around, and some amusing animations

on one’s personal web site, is patently ridiculous.

The same is true in say, civil engineering: you don’t need ar-

chitects, licensed engineers and a million permits to build a small

shed in your backyard, but you do need them to build a 100 story

skyscraper.

Which brings us to our central topic: there are some kinds of

software where our current development methods are all wrong.
Our task is to define exactly which type of software we have inmind,

and then derive an entirely different development methodology

that is customized to the special characteristics of that strict subset.

There are many properties of software that can be used for

providing a classification. Here we will focus on one particular

“axis”: how well understood it is. The majority of the next section

will be devoted to explaining exactly what this means. Once that is

set up, we can then unravel some operational consequences: how

the characteristics of well understood softare lead to innovative

methods of building such software. As this might be perceived

as too abstract, we give a very concrete example. Of course, our

ideas do not exist in a vacuum: we were inspired by a number of

connected ideas, and we then give credit where credit is due. More

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

than just ideas, there are also technologies that back these ideas,

some of which we’re already using, others which lie in our future,

and we outline some of these as well.

2 WHAT IS “WELL UNDERSTOOD”
SOFTWARE?

Definition 1. A software domain is well understood if

(1) the domain knowledge (DK) is codified,
(2) the computational interpretation of the DK is clear,
(3) the engineering of code to perform said computations is well

understood.

By codified, we mean that the knowledge exists in standard form

in a variety of textbooks. For example, many domains of knowledge

in engineering use differential equations as models. Furthermore,

the quantities of interest are known, given standard names and

standard units. In other words, there is an established vocabulary

and body of knowledge that is uncontroversial.

We can further refine these high level ideas as follows, where

we use the same numbering as above to indicate which part of

the definition is being directly refined, but where the refinement

nevertheless should be understood more holistically.

(1) Models in the DK can be written formally.

(2) Models in the DK can be turned into functional relations

by existing mathematical steps.

(3) Turning these functional relations into code is also an un-

derstood transformation.

Perhaps the most important aspect of this refinement is that the

last two parts deeply involve choices: What quantities are consid-

ered inputs, outputs and parameters to make the model functional?

There are also a host of choices, including which programming lan-

guage, but also software architecture, data-structures, algorithms,

etc, which are also part of creating the code.

It is important to understand that well understood does not im-

ply choice free. Writing a small script to move some files around

can be easily written as a Shell script, or in Python or in Haskell,

depending on the author’s style. In all cases, assuming the author

chooses a language in which they are fluent, the job will be entirely

straightforward.

Lest our reader gets misled into thinking that code is the only

artifact that matters, we should explicitly refine our definition in a

different direction, equally important.

(1) The meaning of the models is understood at a human-

pedagogical level, i.e. it is explainable.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Jacques Carette, Spencer Smith, and Jason Balaci

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(2) Combining models is also explainable. Thus the transform-
ers we mentioned before simultaneously operate on mathe-

matical representations and on explanations. This requires

that English descriptions also be captured in the same man-

ner as the formal-mathematical knowledge.

(3) Similarly, the transformers the arise from making software

oriented decisions requires that they be captured with a

similar mechanism, including English explanations as well.

We dub these triform theories, as a nod to biform theories[?]. The
idea is that we couple (1) an axiomatic description, (2) a computa-

tional description, and (3) an English description of a concept.

It is important to notice that there are various kinds of choices

embedded in the different kinds of knowledge. They can show up

simply as parameters, for example the gravity constant associated to

a planet. This also shows up as different transformers, for example

turning 𝐹 −𝑚 · 𝑎 = 0 into 𝐹 (𝑚,𝑎) =𝑚 · 𝑎, i.e. from a conservation

law into a computation. Note that, for motion computation, that

same conservation law is often rewritten as 𝑎 (𝑚, 𝐹) = 𝐹/𝑚 as part

of solving 𝑎 = ¥𝑥 to obtain a position (𝑥) as a function of time (𝑡).

And we also get choices of phrasing, which are equivalent but may

be more adequate in context, for example.

3 HOWWOULD YOU GO BUILDING THAT?
So what would be a reasonable process for building a piece of soft-

ware assuming some kind of infrastructure exists for recording the

kind of knowledge outlined in section 2? Let us outline a chronolog-

ical “story” of such an idealized process. It is important to note that

we’re not outlining the process to follow, but rather the idealized
process (influenced by Parnas’ [?]).

(1) Have a problem to solve, or task to achieve, which falls into

the realm where software is likely to be the central part of

the solution.

(2) Convince oneself that the underlying problem domain is

well understood, as defined in section 2.

(3) Describe the problem:

(a) Find the base knowledge (theory) in the pre-existing

library or, failing that, write it if it does not yet exist,

(b) Assemble the ingredients into a coherent narrative,

(c) Describe the characteristics of a good solution,

(d) Come up with basic examples (to test correctness, in-

tuitions, etc).

(e) Identify the naturally occurring known quantities asso-

ciated to the problem domain, as well as some desired

quantities. For example, some problems naturally in-

volve lengths lying in particular ranges, while others

will involve ingredient concentrations, again in partic-

ular ranges.

(4) Describe, by successive transformations, how the natural

knowledge can be turned from a set of relations (and con-

straints) into a deterministic
1
input-output process.

1
For the moment, we explicitly restrict our domain to deterministic solutions, as a

meta-design choice. This can be expanded later.

(a) This set of relations might require specializing the

theory (eg. from 𝑛-dimensional to 2-dimensional, as-

suming no friction, etc). These choices need to be doc-

umented, and are a crucial aspect of the solution pro-

cess. The rationale for the choices should also be doc-

umented. Lastly, whether these choices are likely or

unlikely to change in the future should be recorded.

(b) This set of choices is likely dependent, and thus some-

what ordered. In other words, some decisions will en-
able other choices to be made that would otherwise

be unavailable. Eg: some data involved in the solution

process is orderable, so that sorting is now a possibility

that may be useful.

(5) Describe how the computation process from step 4 can be

turned into code. Note that the same kinds of choice can

occur here.

(6) Turn the steps (i.e. from items 4 and 5) into a recipe, aka
program, that weaves together all the information into a

variety of artifacts (softifacts). These can be read, or execute,

or . . . as appropriate.

While this last step might appear somewhat magical, it isn’t.

The whole point of defining well understood is to enable that last

step. A suitable knowledge encoding is needed to enable it, but this

step is a reflection of what humans currently themselves do when

assembling these very same softifacts. We are merely being explicit

about how to go about mechanizing these steps.

What is missing is an explicit information architecture of each
of the necessary softifacts. In other words, what information is

necessary to enable the mechanized generation of each softifact? It

turns out that many of them are quite straightforward.

It is worthwhile to note that way too many research projects

skip step 1 and 3: in other words, they never really write down what

problem they’re trying to solve. This is part of the tacit knowledge
of a lot of research software. It is crucial to our whole process that

this knowledge go from tacit to explicit. This is also one of the

fundamental recognitions of Knowledge Management [?].
TODO: insert graphical illustration of the funnel from informa-

tion to softifacts.

4 EXAMPLE
5 CONNECTED IDEAS
A multitude of ideas, old and new, have influenced us. They appear

indirectly in our work; we use the conceptual aspects, and not the

associated technologies (when they exist). The technologies we do

use are in Section 8.

We do not always use the original conceptualization of the work,

but a modern re-interpretation, incorporation various “lessons

learned” through years of use. To keep things short, we outline

our take-away, and refer the reader to the original literature for the

initial view of the ideas.

6 RE-ORGANIZING ARTIFACTS
The most important idea that got all of this started is literate pro-
gramming[1]. A key observation here is that computer code really

has two audiences: the computer, proxied via a compiler or inter-

preter, and human readers. Traditionally, code is arranged for the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A Sustainable Approach to Developing Software in Well Understood Domains Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

convenience of the compiler
2
. Many languages are quite inflexible

with respect to how code must be arranged to be acceptable. This

directly clashes with the desire to inform the human reader of the

code as to the underlying story that forms the backbone of why the

code is written the way it is.

Thus the fundamental ideas of literate programming are:

(1) The idea of not writing the eventual artifacts directly,

(2) Of being able to “chunk up” pieces of code in arbitrary

ways,

(3) Ofwriting a program to explicitlyweave together the chunks

into a final program.

In the end, two artifacts are generated: a human-readable “story”

that is nicely typeset, that follows a logical flow amenable to human

understanding, and a piece of code.

Not all literate programming tools actually support all these

features. For example literate Haskell only keeps the feature of nice

typesetting, completely dropping the 3 main ideas above!

The next source of idea is org-mode[?]. A shallow view is that

org-mode is an Emacs major mode for plain text markup
3 and

much more. It is that “and much more” which is of interest here.

Amongst other features, Org-mode lets you write documents that

mixes many different languages together. It also allows you to

run certain code blocks and insert their results into the document

itself. And, like literate programming, it also allows the export of

both nice documents (via LATEX) and code (via a tangling process).

The paper A Computing Environment for Literate Programming and
Reproducible Research[2] further describes the features and process.

The possibilities are quite extensive.

A slightly different take on similar ideas is offered by Jupyter
notebooks and JupyterLab4. To quote the developers’ own descrip-

tions:

The Jupyter Notebook is an open-source web ap-

plication that allows you to create and share docu-

ments that contain live code, equations, visualiza-

tions and narrative text. Uses include: data cleaning

and transformation, numerical simulation, statisti-

cal modeling, data visualization, machine learning,

and much more.

and

JupyterLab is a web-based interactive development

environment for Jupyter notebooks, code, and data.

JupyterLab is flexible: configure and arrange the

user interface to support a wide range of work-

flows in data science, scientific computing, and ma-

chine learning. JupyterLab is extensible and mod-

ular: write plugins that add new components and

integrate with existing ones.

The principal difference is that the main interface is a web page

which is furthermore very interactive. It is also multi-lingual. The

weaving and tangling features, while somewhat present, are de-

emphasized over interactivity. The all-in-one interactive document

is the most important element. The feature set is very appealing,

and contributes greatly to its success.

2
we use “compiler” even though this applies equally well to interpreters

3
taken literally from https://orgmode.org.

4
https://jupyter.org

Commentary: The main weakness in all of these approaches is

that they are all centered on a single-document idea. The informa-

tion contained in the document itself is not re-usable. So while all

three ideas are a definite improvement over more traditional means

of doing development, it is still not enough. Furthermore, all three

approaches still involve hand-writing a lot of code, even though

that code is somewhat liberated from the strictures imposed by the

languages themselves.

7 THE REST
• cognitive work analysis, ecological interface design

• knowledge management

• ontologies, domain knowledge

• biform theories

• variabilities and commonalities, program families, software

product lines.

• re-use

• views (software architecture)

• software artifacts

• (re)certification

• some ities: traceability, consistency

• reproducible research

• knowledge-based SE?

• MDD, MDE

• Grounded Theory

8 SOME USEFUL TECHNOLOGIES
• DSLs

• code generation

• program families

• grammatical framework

• plate, multiplate, optics

• Problem Solving Environments (PSEs).

Another item to consider adding to the list is Problem Solv-

ing Environments (PSE). A PSE is "[a] system that provides

all the computational facilities necessary to solve a tar-

get class of problems. It uses the language of the target

class and users need not have specialized knowledge of

the underlying hardware or software" (Kawata et al., 2012

). (From https://www.igi-global.com/dictionary/computer-

assisted-problem-solving-environment-pse/41954). This is

a different way to solve the same problem we are trying

to solve. They want the user to work with their domain

knowledge, but they accomplish this (as far as I can tell) by

providing powerful general purpose tools and a language

to interface with these tools. They are focusing on run-time

variability, while we can focus on build time variability. An

argument could be made that general purpose tools are

overwhelming for people. Being able to generate an appli-

cation that is as complex as the user needs, but no more

complex, sounds like a good thing to me. I believe they try

to handle the complexity by often providing a graphical

DSL.

The idea of PSEs might be getting old. My quick search

didn’t find many newer papers. This review article from

2010 might be useful:

3

https://orgmode.org
https://jupyter.org
https://www.igi-global.com/dictionary/computer-assisted-problem-solving-environment-pse/41954
https://www.igi-global.com/dictionary/computer-assisted-problem-solving-environment-pse/41954

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Jacques Carette, Spencer Smith, and Jason Balaci

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

https://www.researchgate.net/publication/220147479_Review_

of_PSE_Problem_Solving_Environment_Study

REFERENCES
[1] Donald E. Knuth. 1984. Literate Programming. Comput. J.

27, 2 (1984), 97–111. https://doi.org/10.1093/comjnl/27.2.97

arXiv:http://comjnl.oxfordjournals.org/content/27/2/97.full.pdf+html

[2] Eric Schulte, Dan Davison, Thomas Dye, Carsten Dominik, et al. 2012. A multi-

language computing environment for literate programming and reproducible

research. Journal of Statistical Software 46, 3 (2012), 1–24.

4

https://www.researchgate.net/publication/220147479_Review_of_PSE_Problem_Solving_Environment_Study
https://www.researchgate.net/publication/220147479_Review_of_PSE_Problem_Solving_Environment_Study
https://doi.org/10.1093/comjnl/27.2.97
https://arxiv.org/abs/http://comjnl.oxfordjournals.org/content/27/2/97.full.pdf+html

	Abstract
	1 Introduction
	2 What is ``well understood'' Software?
	3 How would you go building that?
	4 Example
	5 Connected Ideas
	6 Re-organizing artifacts
	7 The rest
	8 Some Useful Technologies
	References

